Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network

Author:

Wu Ze,Pan Feifan,Li Dandan,He HaoORCID,Zhang Tiancheng,Yang Shuyun

Abstract

Accurate prediction of photovoltaic power is of great significance to the safe operation of power grids. In order to improve the prediction accuracy, a similar day clustering convolutional neural network (CNN)–informer model was proposed to predict the photovoltaic power. Based on correlation analysis, it was determined that global horizontal radiation was the meteorological factor that had the greatest impact on photovoltaic power, and the dataset was divided into four categories according to the correlation between meteorological factors and photovoltaic power fluctuation characteristics; then, a CNN was used to extract the feature information and trends of different subsets, and the features output by CNN were fused and input into the informer model. The informer model was used to establish the temporal feature relationship between historical data, and the final photovoltaic power generation power prediction result was obtained. The experimental results show that the proposed CNN–informer prediction method has high accuracy and stability in photovoltaic power generation prediction and outperforms other deep learning methods.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3