Field Experience for Determination of Formaldehyde in Stack Emissions

Author:

Cefalì Amedeo M.ORCID,Bolzacchini Ezio,Ferrero LucaORCID,Clauser Giuseppe,Dallapiccola Christian,Maggi Stefano,Cipriano DomenicoORCID

Abstract

Formaldehyde (H−CHO) is a chemical compound extremely common in many industrial productions. However, in 2004, it was reclassified as carcinogenic (H350) and mutagenic (H341). Therefore, stringent limitations on emissions were implemented; among them, the lowest limit (3 mg/m3) was adopted by some Italian Local Competent Authorities. Up to now, no European-validated method for emission control was available, and for this reason, a specific working group (WG 40) has been created in the framework of the European Committee for Standardization Technical Committees 264 (CEN TC 264) to publish a qualified method for the quantification of Formaldehyde emissions from stationary sources (i.e., power stations, incinerators, petrochemicals, and industrial plants that uses combustion for their energetic purposes). Some preliminary trial tests were conducted to evaluate (1) the sampling protocol, and (2) the analytical technique. From a measurement perspective, two methods were selected: EPA 323—VDI 3862-6 and VDI 3862-2. Every new method prepared by CEN shall be verified before publication in the field and in real conditions to verify its metrological properties (i.e., precision, biases, reproducibility, and repeatability), costs and the training needs for involved personnel. With this aim, two measuring campaigns were conducted, and some important conclusions emerged concerning the H−CHO sampling procedure. Due to high water levels normally present, condensation during sampling is critical and can cause unpredictable errors; wet traps (impingers) give good responses. The sampling in pure water appeared unstable, but using an H2SO4 solution solved this issue, thus being recommended.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3