Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area

Author:

Lei W.,Zavala M.,de Foy B.,Volkamer R.,Molina M. J.,Molina L. T.

Abstract

Abstract. Formaldehyde (HCHO) is a radical source that plays an important role in urban atmospheric chemistry and ozone formation. The Mexico City Metropolitan Area (MCMA) is characterized by high anthropogenic emissions of HCHO (primary HCHO), which together with photochemical production of HCHO from hydrocarbon oxidation (secondary HCHO), lead to high ambient HCHO levels. The CAMx chemical transport model was employed to evaluate the impact of primary HCHO on its ambient concentration, on the ROx radical budget, and on ozone (O3) formation in the MCMA. Important radical sources, including HCHO, HONO, and O3-olefin reactions, were constrained by measurements from routine observations of the local ambient air monitoring network and the MCMA-2003 field campaign. Primary HCHO was found not only to contribute significantly to the ambient HCHO concentration, but also to enhance the radical budget and O3 production in the urban atmosphere of the MCMA. Overall in the urban area, total daytime radical production is enhanced by up to 10% and peak O3 concentration by up to 8%; moreover primary HCHO tends to make O3 both production rates and ambient concentration peak half an hour earlier. While primary HCHO contributes predominantly to the ambient HCHO concentration between nighttime and morning rush hours, significant influence on the radical budget and O3 production starts early in the morning, peaks at mid-morning and is sustained until early afternoon.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference44 articles.

1. Barnard, J. C., Volkamer, R., and Kassianov, E. I.: Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA), Atmos. Chem. Phys. Discuss., 8, 10189–10225, 2008.

2. Byun, D. W.: Dynamically consistent formulations in meteorological and air quality models for multiscale atmospheric studies. Part I: Governing equations in a generalized coordinate system, J. Atmos. Sci., 56, 3789–3807, 1999.

3. CAM (Comisión Ambiental Metropolitana), 2004: Inventario de Emisiones 2002 de la Zona Metropolitana del Valle de México, México, 2004.

4. Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity, final report to California Air Resources Board, Contract 92-329 and 95-308, Calif. Air Res. Board, Sacramento, CA, USA, 2000.

5. Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J.: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res., 81, 421–423, 1987.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3