Tolerance of Triploid Hybrids of White Poplar ‘Beilinxiongzhu 1’ to Genetic Transformation Screening Agents In Vitro

Author:

Liu Lingyun12,Zhang Jun12,Song Yuying12,Xu Ying12,Wang Shijie12,Yang Gaixia12,Yang Minsheng12

Affiliation:

1. Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China

2. Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China

Abstract

Genetic transformation of forest trees is essential for validating gene functions and breeding new varieties through molecular means. Appropriate selective pressure is critical for creating an effective screening system. ‘Beilinxiongzhu 1’ sensitivity testing showed that the critical tolerance concentrations for hygromycin (Hyg), kanamycin (Kan), and glyphosate (PPT) in leaf explants were 2.0 mg/L, 20 mg/L, and 1.0 mg/L, respectively. Among the physiological indicators, soluble sugar content, soluble protein content, and endogenous hormone levels were identified as key markers of the effects of the different antibiotic treatments. Transcriptome analysis showed that Hyg treatment resulted in a large number of differentially expressed genes (DEGs) involved in leaf cell wall synthesis and glucose metabolism. Under Kan treatment, the DEGs were associated with pathways such as ribosome biosynthesis and histone packaging in eukaryotes. Under PPT treatment, significant DEGs were related to ABC transporters. DEGs common to all three antibiotics were involved in glutathione metabolism pathways. A weighted gene co-expression network analysis identified TRXH2, H3.2, H2B, GST, U71K1, and CHS as key genes in response to antibiotic stress. By elucidating the physiological and molecular mechanisms by which different antibiotics affect leaf sprouting, our study serves as a reference for research into the genetic transformation of poplar leaves.

Funder

The National Key Research and Development Program of China during the 14th Five-year Plan Period

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3