Genetic Transformation of Forest Trees and Its Research Advances in Stress Tolerance

Author:

Li Yi12,Yuan Yanhui12,Hu Zijian12,Liu Siying1,Zhang Xi12ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China

2. Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China

Abstract

Forests represent a vital natural resource and play a crucial role in climate regulation and maintaining biodiversity. However, the growth and development of forest trees are increasingly challenged by rising environmental pressures, particularly detrimental abiotic stressors. To address these challenges, genetic transformation technologies have emerged as effective solutions. Despite various difficulties in genetic transformation for forest trees, including prolonged life cycles, genetic diversity, interspecies variations, and complex regeneration systems, significant research progress has been achieved in tree gene editing, transgenic technology, and methods for delivering exogenous molecules. These technologies have the potential to enhance tree quality, increase productivity, and improve resistance to abiotic stress. This review provides an overview of the main methods and transformation receptors in tree genetic transformation. Additionally, we summarize several novel techniques, such as nanoparticle-mediated gene transformation, advanced gene editing technology, various novel delivery carriers, and non-genetically modified protein function interference through peptide aptamer. Notably, we also place emphasis on several referable genes from forest trees and common crops, together with their potential function for improving abiotic stress responses. Through this research, we aspire to achieve sustainable utilization and conservation of tree resources, thereby providing substantial support for future livelihoods and economic development.

Funder

Fundamental Research Funds for the Central Universities

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Program of Introducing Talents of Discipline to Universities

Beijing Forestry University Outstanding Postgraduate Mentoring Team Building

Publisher

MDPI AG

Reference122 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3