Time-course transcriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines

Author:

Wu Yang,Wang Yaru,Shi Huimin,Hu Haibo,Yi Liuxi,Hou JianhuaORCID

Abstract

Drought is one of the most serious abiotic stress factors limiting crop yields. Although sunflower is considered a moderate drought-tolerant plant, drought stress still has a negative impact on sunflower yield as cultivation expands into arid regions. The extent of drought stress is varieties and time-dependent, however, the molecular response mechanisms of drought tolerance in sunflower with different varieties are still unclear. Here, we performed comparative physiological and transcriptome analyses on two sunflower inbred lines with different drought tolerance at the seedling stage. The analysis of nine physiological and biochemical indicators showed that the leaf surface area, leaf relative water content, and cell membrane integrity of drought tolerance inbred line were higher than those of drought-sensitive inbred line under drought stress, indicating that DT had stronger drought resistance. Transcriptome analyses identified 24,234 differentially expressed genes (DEGs). Gene ontology (GO) analysis showed the up-regulated genes were mainly enriched in gibberellin metabolism and rRNA processing, while the down-regulated genes were mainly enriched in cell-wall, photosynthesis, and terpene metabolism. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis showed genes related to GABAergic synapse, ribosome biogenesis were up-regulated, while genes related with amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, photosynthesis were down-regulated. Mapman analysis revealed differences in plant hormone-signaling genes over time and between samples. A total of 1,311 unique putative transcription factors (TFs) were identified from all DEGs by iTAK, among which the high abundance of transcription factor families include bHLH, AP2/ERF, MYB, C2H2, etc. Weighted gene co-expression network analysis (WGCNA) revealed a total of 2,251 genes belonging to two modules(blue 4, lightslateblue), respectively, which were significantly associated with six traits. GO and KEGG enrichment analysis of these genes was performed, followed by visualization with Cytoscape software, and the top 20 Hub genes were screened using the CytoHubba plugin.

Funder

National Natural Science Foundation of China

Inner Mongolia Agricultural University animal and plant breed Breeding special project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference126 articles.

1. Chemical composition of brazilian sunflower varieties/composición química de las variedades de girasol brasileñas/composition chimique de sortes de tournesol brésiliennes.;P Rosa;Helia,2009

2. Soil water depletion by sunflower and sorghum under rainfed conditions;F Rachidi;Agricultural Water Management,1993

3. Improvement of drought tolerance in sunflower (Helianthus annuus L.) by foliar application of abscisic acid and potassium chloride.;S Hussain;Pakistan Journal of Nutrition,2013

4. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress.;M Ghobadi;Industrial Crops and Products,2013

5. Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives;M Hussain;Agricultural water management,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3