Comparative transcriptome and coexpression network analysis reveals key pathways and hub candidate genes associated with sunflower (Helianthus annuus L.) drought tolerance

Author:

Shi Huimin,Hou Jianhua,Li Dandan,Hu Haibo,Wang Yanxia,Wu Yang,Yi Liuxi

Abstract

Abstract Background Drought severely limits sunflower production especially at the seedling stage. To investigate the response mechanism of sunflowers to drought stress, we utilized two genotypes of sunflower materials with different drought resistances as test materials. The physiological responses were investigated under well-watered (0 h) and drought-stressed conditions (24 h, 48 h, and 72 h). Results ANOVA revealed the greatest differences in physiological indices between 72 h of drought stress and 0 h of drought stress. Transcriptome analysis was performed after 72 h of drought stress. At 0 h, there were 7482 and 5627 differentially expressed genes (DEGs) in the leaves of K55 and K58, respectively, and 2150 and 2527 DEGs in the roots of K55 and K58, respectively. A total of 870 transcription factors (TFs) were identified among theDEGs, among which the high-abundance TF families included AP2/ERF, MYB, bHLH,and WRKY. Five modules were screened using weighted gene coexpressionnetwork analysis (WGCNA), three and two of which were positively and negatively, respectively, related to physiological traits. KEGG analysis revealedthat under drought stress, “photosynthesis”, “carotenoid biosynthesis”, “starch and sucrose metabolism”, “ribosome”, “carotenoid biosynthesis”, “starch and sucrose metabolism”, “protein phosphorylation” and “phytohormone signaling” are six important metabolic pathways involved in the response of sunflower to drought stress. Cytoscape software was used to visualize the three key modules, and the hub genes were screened. Finally, a total of 99 important candidate genes that may be associated with the drought response in sunflower plants were obtained, and the homology of these genes was compared with that in Arabidopsis thaliana. Conclusions Taken together, our findings could lead to a better understanding of drought tolerance in sunflowers and facilitate the selection of drought-tolerant sunflower varieties.

Funder

National Natural Science Foundation

Basic Research Operating Costs of Colleges and Universities directly under the Inner Mongolia Autonomous Region

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3