Cataloging the Genetic Response: Unveiling Drought-Responsive Gene Expression in Oil Tea Camellia (Camellia oleifera Abel.) through Transcriptomics

Author:

Zhang Zhen12,Xu Yanming12,Liu Caixia12,Chen Longsheng12,Zhang Ying12,He Zhilong12ORCID,Wang Rui12,Xun Chengfeng12,Ma Yushen12,Yuan Xiaokang3,Wang Xiangnan12,Chen Yongzhong12,Yang Xiaohu12

Affiliation:

1. Hunan Academy of Forestry, Changsha 410000, China

2. National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China

3. Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction, Hunan Research Institute of Meteorological Sciences, Changsha 410000, China

Abstract

Drought stress is a critical environmental factor that significantly impacts plant growth and productivity. However, the transcriptome analysis of differentially expressed genes in response to drought stress in Camellia oleifera Abel. is still unclear. This study analyzed the transcriptome sequencing data of C. oleifera under drought treatments. A total of 20,674 differentially expressed genes (DEGs) were identified under drought stress, with the number of DEGs increasing with the duration of drought. Specifically, 11,793 and 18,046 DEGs were detected after 8 and 15 days of drought treatment, respectively, including numerous upregulated and downregulated genes. Gene Ontology (GO) enrichment analysis showed that the DEGs were primarily involved in various biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that carbon metabolism, glyoxylate and dicarboxylate metabolism, proteasome, glycine, serine, and threonine metabolism were the main affected pathways. Among the DEGs, 376 protein kinases, 42 proteases, 168 transcription factor (TF) genes, and 152 other potential functional genes were identified, which may play significant roles in the drought response of C. oleifera. The expression of relevant functional genes was further validated using quantitative real-time PCR (qRT-PCR). These findings contribute to the comprehension of drought tolerance mechanisms in C. oleifera and bolster the identification of drought-resistant genes for molecular breeding purposes.

Funder

Top Ten Technological Research Projects in Hunan Province

the Hunan Province Camellia oleifera Industry Research and Demonstration Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3