Abstract
Viscous dampers are a type of seismic damping equipment widely used in high-rise buildings and bridges. However, the viscosity of the damping fluid inside the viscous damper will change over time during its use, which significantly reduces the seismic performance of the viscous damper. Hence, it is necessary to monitor the viscosity of the fluid inside the damper over its service life. In this paper, a damping fluid viscosity monitoring method based on wireless impedance measurement technology is proposed. A piezoelectric sensor is installed in a damper cylinder specimen, and the viscosity of the damping fluid is determined by measuring the piezoelectric impedance value of the sensor. In this study, 10 samples of damping fluids with different viscosities are tested. In order to quantitatively correlate damping fluid viscosity and electrical impedance, a viscosity index (VI) based on the root mean square deviation (RMSD) is proposed. The experimental results show that the variation of the real part in the impedance signal can qualitatively determine the damping fluid viscosity while the proposed VI can effectively and quantitatively identify the damping fluid viscosity.
Funder
the National Natural Science Foundation of China
Hubei Provincial Outstanding Young and middle-aged Science and Technology Innovation Team Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献