Monitoring of soil water content using spherical smart aggregates based on electromechanical impedance (EMI) technique

Author:

Lan ChengmingORCID,Zhuang Shuo,Han Song,Wang JianjunORCID,Li WeijieORCID

Abstract

Abstract Real-time monitoring of soil water content is of great significance to prevent many engineering accidents, such as landslide, water seepage of foundation dam, and reduction of foundation bearing capacity. Electromechanical impedance (EMI) technique based smart aggregates (SAs) have showed excellent monitoring capability in various engineering applications. However, there are limited reports on the application of EMI based SAs in the monitoring of the soil water content. In this paper, the EMI based spherical SAs (SSAs) were investigated in the monitoring of soil water content. Firstly, the SSAs were designed and fabricated using the monolithic concrete encapsulation method, and their stable performance in air were evaluated, and confirmed by testing and analyzing the impedance spectrum. Then, the fabricated SSAs were immersed in the water environment for 28 d to ensure the stability under the working conditions, such as the soil with high water content and the hydration process of early-age concrete. Secondly, the monitoring experiments of soil water content were carried out based on the SSAs and the traditional SAs using the EMI technique. The measured impedance signatures under different water contents in soil were quantified by three types of statistical indexes, including root mean square deviation, mean absolute percentage deviation, and correlation coefficient deviation. The experimental results show that compared with the traditional SAs, the SSAs are more sensitive and stable to monitor the soil water content. Finally, the effect of temperature on the performance of SSA based on the EMI technique were conducted experimentally. The results demonstrate that temperature has influence on the monitoring results of the SSAs based on the EMI technique.

Funder

National Natural Science Foundation of China

the scientific research fund of China Academy of Railway Sciences

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3