Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan

Author:

Tran Bao-Linh,Tseng Wei-Chun,Chen Chi-Chung,Liao Shu-Yi

Abstract

Climate change is regarded as one of the major factors enhancing the transmission intensity of dengue fever. In this study, we estimated the threshold effects of temperature on Aedes mosquito larval index as an early warning tool for dengue prevention. We also investigated the relationship between dengue vector index and dengue epidemics in Taiwan using weekly panel data for 17 counties from January 2012 to May 2019. To achieve our goals, we first applied the panel threshold regression technique to test for threshold effects and determine critical temperature values. Data were then further decomposed into different sets corresponding to different temperature regimes. Finally, negative binomial regression models were applied to assess the non-linear relationship between meteorological factors and Breteau index (BI). At the national level, we found that a 1°C temperature increase caused the expected value of BI to increase by 0.09 units when the temperature is less than 27.21 °C, and by 0.26 units when the temperature is greater than 27.21 °C. At the regional level, the dengue vector index was more sensitive to temperature changes because double threshold effects were found in the southern Taiwan model. For southern Taiwan, as the temperature increased by 1°C, the expected value of BI increased by 0.29, 0.63, and 1.49 units when the average temperature was less than 27.27 °C, between 27.27 and 30.17 °C, and higher than 30.17 °C, respectively. In addition, the effects of precipitation and relative humidity on BI became stronger when the average temperature exceeded the thresholds. Regarding the impacts of climate change on BI, our results showed that the potential effects on BI range from 3.5 to 54.42% under alternative temperature scenarios. By combining threshold regression techniques with count data regression models, this study provides evidence of threshold effects between climate factors and the dengue vector index. The proposed threshold of temperature could be incorporated into the implementation of public health measures and risk prediction to prevent and control dengue fever in the future.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3