Spatiotemporal Characterization of Dengue Incidence and Its Correlation to Climate Parameters in Indonesia

Author:

Mamenun 12ORCID,Koesmaryono Yonny2,Sopaheluwakan Ardhasena3ORCID,Hidayati Rini24,Dasanto Bambang Dwi2,Aryati Rita5

Affiliation:

1. Center for Applied Climate Information and Services, Indonesian Agency for Meteorology Climatology and Geophysics, Jakarta 10720, Indonesia

2. Department of Geophysics and Meteorology, IPB University, Bogor 16680, Indonesia

3. Deputy for Climatology, Indonesian Agency for Meteorology Climatology and Geophysics, Jakarta 10720, Indonesia

4. Center for Climate Risk and Opportunity Management in South Asia Pacific, IPB University, Bogor 16143, Indonesia

5. Directorate of Prevention and Control of Infectious Diseases, Ministry of Health, Jakarta 12950, Indonesia

Abstract

Dengue has become a public health concern in Indonesia since it was first found in 1968. This study aims to determine dengue hotspot areas and analyze the spatiotemporal distribution of dengue and its association with dominant climate parameters nationally. Monthly data for dengue and climate observations (i.e., rainfall, relative humidity, average, maximum, and minimum temperature) at the regency/city level were utilized. Dengue hotspot areas were determined through K-means clustering, while Singular Value Decomposition (SVD) determined dominant climate parameters and their spatiotemporal distribution. Results revealed four clusters: Cluster 1 comprised cities with medium to high Incidence Rates (IR) and high Case Densities (CD) in a narrow area. Cluster 2 has a high IR and low CD, and clusters 3 and 4 featured medium and low IR and CD, respectively. SVD analysis indicated that relative humidity and rainfall were the most influential parameters on IR across all clusters. Temporal fluctuations in the first mode of IR and climate parameters were clearly delineated. The spatial distribution of heterogeneous correlation between the first mode of rainfall and relative humidity to IR exhibited higher values, which were predominantly observed in Java, Bali, Nusa Tenggara, the eastern part of Sumatra, the southern part of Kalimantan, and several locations in Sulawesi.

Funder

Center of Training and Education, Indonesian Agency for Meteorology, Climatology, and Geophysics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3