A Trajectory Tracking Control Strategy of 4WIS/4WID Electric Vehicle with Adaptation of Driving Conditions

Author:

Zheng HongyuORCID,Yang Shuo

Abstract

The Four Wheel Independent Steering/Driving (4WIS/4WID) electric vehicle has the advantage that the rotation angle and driving torque of each wheel can be independently and accurately controlled. In this paper, a trajectory tracking strategy based on the hierarchical control method is designed. In the path tracking layer, the nonlinear state feedback controller is used, and the neural network Proportion Integration Differentiation (NNPID) controller is designed to track the desired path and to obtain the desired yaw rate. By tracking the desired yaw rate and vehicle speed, the terminal sliding mode controller in vehicle dynamics control layer calculates the desired resultant tire force. In the tire force distribution layer, the multiple optimization objectives, including vehicle stability performance objective, energy-saving performance objective, and tire wear energy consumption objectives are determined and the weight coefficient is adaptive to different working conditions based on fuzzy logic theory. Finally, the wheel steering angle and driving torque of each wheel are calculated by the nonlinear three-degree-of-freedom vehicle model. Simulation results show that it realizes the adaptive control of tire force while tracking the desired trajectory, improves the stability and energy saving of the vehicle, and effectively reduces tire wear.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Finite Frequency Domain State Feedback H Controller for Yaw Stabilization of Four-Wheel Independent Steering Autonomous Vehicles;2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI);2023-10-27

2. Reference Generator for a Platoon of Position-Controlled Vehicles on a Curved Path;SAE International Journal of Connected and Automated Vehicles;2023-10-09

3. Determination of Crop Soil Quality for Stevia rebaudiana Bertoni Morita II Using a Fuzzy Logic Model and a Wireless Sensor Network;Applied Sciences;2023-08-22

4. Tracking Control Approach of Speed Profiles of Induction Motors used in Electric Vehicles;2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE);2023-08-13

5. Path-Following Strategies for 4-Wheel Independent Steering EVs Using PPO Reinforcement Learning and Turning Radius Gain;Transaction of the Korean Society of Automotive Engineers;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3