An Analytical Model for Production Analysis of Hydraulically Fractured Shale Gas Reservoirs Considering Irregular Stimulated Regions

Author:

Qiu Kaixuan,Li Heng

Abstract

Shale gas reservoirs are typically developed by multistage, propped hydraulic fractures. The induced fractures have a complex geometry and can be represented by a high permeability region near each fracture, also called stimulated region. In this paper, a new integrative analytical solution coupled with gas adsorption, non-Darcy flow effect is derived for shale gas reservoirs. The modified pseudo-pressure and pseudo-time are defined to linearize the nonlinear partial differential equations (PDEs) and thus the governing PDEs are transformed into ordinary differential equations (ODEs) by integration, instead of the Laplace transform. The rate vs. pseudo-time solution in real-time space can be obtained, instead of using the numerical inversion for Laplace transform. The analytical model is validated by comparison with the numerical model. According to the fitting results, the calculation accuracy of analytic solution is almost 99%. Besides the computational convenience, another advantage of the model is that it has been validated to be feasible to estimate the pore volume of hydraulic region, stimulated region, and matrix region, and even the shape of regions is irregular and asymmetrical for multifractured horizontal wells. The relative error between calculated volume and given volume is less than 10%, which meets the engineering requirements. The model is finally applied to field production data for history matching and forecasting.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3