Production-Performance Analysis of Composite Shale-Gas Reservoirs by the Boundary-Element Method

Author:

Wu Minglu1,Ding Mingcai1,Yao Jun1,Li Chenfeng2,Huang Zhaoqin1,Xu Sinan1

Affiliation:

1. China University of Petroleum, QingDao

2. Swansea University

Abstract

Summary A shale-gas reservoir with a multiple-fractured horizontal well (MFHW) is divided into two regions: The inner region is defined as stimulated reservoir volume (SRV), which is interconnected by the fracture network after fracturing, while the outer region is called unstimulated reservoir volume (USRV), which has not been stimulated by fracturing. Considering an arbitrary interface boundary between SRV and USRV, a composite model is presented for MFHWs in shale-gas reservoirs, which is based on multiple flow mechanisms, including adsorption/desorption, viscous flow, diffusive flow, and stress sensitivity of natural fractures. The boundary-element method (BEM) is applied to solve the production of MFHWs in shale-gas reservoirs. The accuracy of this model is validated by comparing its production solution with the result derived from an analytical method and the reservoir simulator. Furthermore, the practicability of this model is validated by matching the production history of the MFHW in a shale-gas reservoir. The result shows that the model in this work is reliable and practicable. The effects of relevant parameters on production curves are analyzed, including Langmuir volume, Langmuir pressure, hydraulic-fracture width, hydraulic-fracture permeability, natural-fracture permeability, matrix permeability, diffusion coefficient, stress-sensitivity coefficient, and the shape of the SRV. The model presented here can be used for production analysis for shale-gas-reservoir development.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3