Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by Finite Element Method

Author:

Sun Shanhui,Zhou Meihua,Lu Wei,Davarpanah AfshinORCID

Abstract

In this paper, influential parameters on the hydraulic fracturing processes in porous media were investigated. Besides, the simultaneous stimulation of solids, fluids and fractures geomechanical equations were numerically analyzed as a developed 3D model. To do this, the Abacus software was used as a multi-objective program to solve the physical-mechanical symmetry law governing equations, according to the finite element method. Two different layers, A (3104–2984 m) and B (4216–4326 m), are considered in the model. According to the result of this study, the maximum fracture opening length in the connection of the wall surface is 10 and 9 mm for layer B and layer A, respectively. Moreover, the internal fracture fluid pressure for layer B and layer A is 65 and 53 Mpa. It is indicated that fracture fluid pressure reduced with the increase in fracture propagation length. Consequently, the results of this study would be of benefit for petroleum industries to consider several crucial geomechanical characteristics in hydraulic fractures simultaneously as a developed numerical model for different formation layers to compare a comprehensive analysis between each layer.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3