UAV-LiDAR Measurement of Vegetation Canopy Structure Parameters and Their Impact on Land–Air Exchange Simulation Based on Noah-MP Model

Author:

Wu GuotongORCID,You Yingchang,Yang Yibin,Cao JiachenORCID,Bai YujieORCID,Zhu ShengjieORCID,Wu Liping,Wang WeiwenORCID,Chang MingORCID,Wang XuemeiORCID

Abstract

Land surface processes play a vital role in the exchange of momentum, energy, and mass between the land and the atmosphere. However, the current model simplifies the canopy structure using approximately three to six parameters, which makes the representation of canopy radiation and energy distribution uncertain to a large extent. To improve the simulation performance, more specific canopy structure parameters were retrieved by a UAV-LiDAR observation system and updated into the multiparameterization version of the Noah land surface model (Noah-MP) for a typical forest area. Compared with visible-light photogrammetry, LiDAR retrieved a more accurate vertical canopy structure, which had a significant impact on land–air exchange simulations. The LiDAR solution resulted in a 35.0∼48.0% reduction in the range of perturbations for temperature and another 27.8% reduction in the range of perturbations for moisture. This was due to the canopy structure affecting the radiation and heat fluxes of the forest, reducing their perturbation range by 7.5% to 30.1%. To reduce the bias of the land surface interaction simulation, it will be necessary to improve the method of retrieving the canopy morphological parameterization through UAV-LiDAR on a continued basis in the future.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Dimensional Mapping of Habitats Using Remote-Sensing Data and Machine-Learning Algorithms;Remote Sensing;2023-08-23

2. Open-Source Framework for Creation of Canopy Height Models from UAS-Lidar Data;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3