Author:
Fang Yiran,Zou Xiaojun,Lie Zhiyang,Xue Li
Abstract
Forest biomass allocation patterns are important for understanding global carbon cycling and climate change, which might change with environmental conditions and forest characteristics. However, the effects of climate and forest characteristics on biomass allocation fractions (the fraction of total forest biomass distributed in organs) remains unknown. The authors use a large Chinese biomass dataset (1081 forests encompassing 10 forest types) to analyse the responses of biomass allocation fractions to biogeography, climate, and forest characteristics. The authors found that the stem mass fraction significantly increased with age and precipitation and significantly decreased with latitude and temperature. The branch mass fraction significantly decreased with age and density, but significantly increased with temperature and latitude. The leaf mass fraction significantly decreased with age and precipitation and significantly increased with temperature. The root mass fraction significantly increased with latitude and density, and significantly decreased with precipitation. The results suggest that latitude, temperature, precipitation, stand age and density are good predictors of biomass partitioning. These findings support the hypotheses that variation in resource availability constrains organ allocation and provides biogeographically explicit relationships between biomass allocation and both environmental and forest characteristics, which might be used for assessing the impact of changing environmental and forest characteristics on forest carbon dynamics and fixation.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献