Environmental aridity driving latitudinal pattern of biomass allocation fractions in root systems of 63 shrub species in dry valleys

Author:

Yang Yu12ORCID,Wang Zilong12,Bao Weikai1,Wu Ning1,Hu Hui12ORCID,Yang Tinghui12,Li Xiaojuan12,Nkrumah Deborah Traselin1,Li Fanglan1ORCID

Affiliation:

1. Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China

2. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractFine roots and absorptive roots play key roles in acquiring resources throughout soil profiles and determining plant functions along environmental gradients. Yet, the geographical pattern of carbon allocation in fine roots, particularly in absorptive roots, and their relations with plant sizes and evironment are less understood. We sampled 243 xerophytic shrubs from 63 species distributed along the latitudinal gradient (23°N to 32°N) in dry valleys of southwest China and synthetically measured biomass fractions of plant organs, especially fine roots and absorptive roots (1st to 3rd root order). We identified latitudinal patterns of biomass allocation fractions of organs and their relationships with plant sizes and environmental factors. The latitudinal patterns of both absorptive root and fine‐root fractions followed weak unimodal distributions; stem biomass fraction increased with the latitude, while the leaf biomass fraction decreased. The fraction of fine‐root biomass had negative relationships with plant height and root depth. The fractions of root, fine root, and absorptive root biomass were largely explained by soil moisture. Furthermore, fraction of fine‐root biomass increased in a relatively humid environment. Overall, soil moisture was the most important factor in driving latitudinal patterns of biomass fraction. Our study highlighted that functional redistribution of root system biomass was the critical adaptive strategy along a latitudinal gradient.

Funder

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3