Three-Dimensional Mapping of Habitats Using Remote-Sensing Data and Machine-Learning Algorithms

Author:

Amani Meisam12ORCID,Foroughnia Fatemeh3ORCID,Moghimi Armin4ORCID,Mahdavi Sahel2,Jin Shuanggen15ORCID

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. WSP Environment and Infrastructure Canada Limited, Ottawa, ON K2E 7L5, Canada

3. Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

4. Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover, Nienburger Str. 4, 30167 Hanover, Germany

5. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Abstract

Progress toward habitat protection goals can effectively be performed using satellite imagery and machine-learning (ML) models at various spatial and temporal scales. In this regard, habitat types and landscape structures can be discriminated against using remote-sensing (RS) datasets. However, most existing research in three-dimensional (3D) habitat mapping primarily relies on same/cross-sensor features like features derived from multibeam Light Detection And Ranging (LiDAR), hydrographic LiDAR, and aerial images, often overlooking the potential benefits of considering multi-sensor data integration. To address this gap, this study introduced a novel approach to creating 3D habitat maps by using high-resolution multispectral images and a LiDAR-derived Digital Surface Model (DSM) coupled with an object-based Random Forest (RF) algorithm. LiDAR-derived products were also used to improve the accuracy of the habitat classification, especially for the habitat classes with similar spectral characteristics but different heights. Two study areas in the United Kingdom (UK) were chosen to explore the accuracy of the developed models. The overall accuracies for the two mentioned study areas were high (91% and 82%), which is indicative of the high potential of the developed RS method for 3D habitat mapping. Overall, it was observed that a combination of high-resolution multispectral imagery and LiDAR data could help the separation of different habitat types and provide reliable 3D information.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3