Investigation of the Pressure Fluctuation Alleviation in a Hydraulic Turbine by Runner Modification

Author:

Yu An,Tang Qinghong,Wang Xincheng,Zhou Daqing,Liu Jintao

Abstract

Cavitation and system instability are the most common problems occurring in hydraulic power systems, especially operated under part-load conditions. Previous research show that when the hydraulic turbine operates apart from designed conditions, such as part-load conditions, a helical vortex rope occurs from the runner exit, and usually generates severe pressure oscillations. Cavitation usually appears and turns the rope to become a two-phase cavitation rope. The occurrence of cavitation rope is believed to be the main reason of the severe pressure oscillations. Based on a new multiphase flow simulation method re-developed in ANSYS CFX, this paper did the runner modification by using grooves and made the investigation of pressure fluctuation alleviation in a hydraulic turbine at different cavitation numbers. The behavior of cavitation rope and the pressure fluctuations induced by cavitation under typical part load conditions with modified runner were analyzed in present research. The results show that besides the pressure fluctuation induced by the rope rotating, cavitation induced a new pressure fluctuation with a lower frequency. For the embedded analysis the results show that the modified runner can decrease the vortex rope eccentricity and increase the vortex core pressure and finally alleviate the two types of pressure fluctuations. Also, the turbine efficiency has a little rise when equipped with the modified runner.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3