Hamiltonian Additional Damping Control for Suppressing Power Oscillation Induced by Draft Tube Pressure Fluctuation

Author:

Zeng Yun1,Yu Shige1ORCID,Dao Fang2,Li Xiang2,Xu Yiting2,Qian Jing2

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

The power oscillation induced by pressure fluctuation in the draft tube of the hydraulic turbine is one of the limiting factors preventing the Francis turbine from operating in the vibration zone. At the present power grid with a high proportion of renewable energy resources, we try to improve the load regulation ability of the hydropower units by extending the stable operation zone to the vibration zone. By the mathematical modelling of pressure fluctuation, this paper gives an analytical expression of the power oscillation. We derive the extended Hamiltonian model of the hydropower unit where power oscillation is external excitation. Secondly, the damping injection method introduces some desired interconnection and damping matrices as the Hamiltonian damping factor into the additional damping control. Finally, through theoretical analysis and experimental simulation, this research discusses the resonance characteristics of pressure fluctuation and power oscillation, the equivalent analysis between the damping factor and equivalent damping coefficient, and the control design of vibration zone crossing during the start-up. Simulation results show that when r25 = 1.3, the minimum power oscillation amplitude is 0.5466, which is equivalent to an increase in D by 20. The maximum oscillation amplitude decreases by 4.6%, and the operation limited zone is reduced by 10.1%. The proposed additional damping control can effectively suppress the power oscillation and expand the regulation range.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3