Robust Forest Fire Detection Method for Surveillance Systems Based on You Only Look Once Version 8 and Transfer Learning Approaches

Author:

Yunusov Nodir1,Islam Bappy MD Siful1,Abdusalomov Akmalbek12ORCID,Kim Wooseong1ORCID

Affiliation:

1. Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea

2. Department of Information Systems and Technologies, Tashkent State University of Economics, Tashkent 100066, Uzbekistan

Abstract

Forest fires have emerged as a significant global concern, exacerbated by both global warming and the expanding human population. Several adverse outcomes can result from this, including climatic shifts and greenhouse effects. The ramifications of fire incidents extend widely, impacting human communities, financial resources, the natural environment, and global warming. Therefore, timely fire detection is essential for quick and effective response and not to endanger forest resources, animal life, and the human economy. This study introduces a forest fire detection approach utilizing transfer learning with the YOLOv8 (You Only Look Once version 8) pretraining model and the TranSDet model, which integrates an improved deep learning algorithm. Transfer Learning based on pre-trained YoloV8 enhances a fast and accurate object detection aggregate with the TranSDet structure to detect small fires. Furthermore, to train the model, we collected 5200 images and performed augmentation techniques for data, such as rotation, scaling, and changing due and saturation. Small fires can be detected from a distance by our suggested model both during the day and at night. Objects with similarities can lead to false predictions. However, the dataset augmentation technique reduces the feasibility. The experimental results prove that our proposed model can successfully achieve 98% accuracy to minimize catastrophic incidents. In recent years, the advancement of deep learning techniques has enhanced safety and secure environments. Lastly, we conducted a comparative analysis of our method’s performance based on widely used evaluation metrics to validate the achieved results.

Funder

Gachon University Research Fund

Ministry of Education of the Republic of Korea, and the National Research Foundation of Korea

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3