A review of machine learning applications in wildfire science and management

Author:

Jain Piyush12,Coogan Sean C.P.2,Subramanian Sriram Ganapathi3,Crowley Mark3,Taylor Steve4,Flannigan Mike D.2

Affiliation:

1. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB T6H 3S5, Canada.

2. Canadian Partnership for Wildland Fire Science, University of Alberta, Renewable Resources, Edmonton, AB T6G 2H1, Canada.

3. Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

4. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC V8Z 1M5, Canada.

Abstract

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then, the field has rapidly progressed congruently with the wide adoption of machine learning (ML) methods in the environmental sciences. Here, we present a scoping review of ML applications in wildfire science and management. Our overall objective is to improve awareness of ML methods among wildfire researchers and managers, as well as illustrate the diverse and challenging range of problems in wildfire science available to ML data scientists. To that end, we first present an overview of popular ML approaches used in wildfire science to date and then review the use of ML in wildfire science as broadly categorized into six problem domains, including (i) fuels characterization, fire detection, and mapping; (ii) fire weather and climate change; (iii) fire occurrence, susceptibility, and risk; (iv) fire behavior prediction; (v) fire effects; and (vi) fire management. Furthermore, we discuss the advantages and limitations of various ML approaches relating to data size, computational requirements, generalizability, and interpretability, as well as identify opportunities for future advances in the science and management of wildfires within a data science context. In total, to the end of 2019, we identified 300 relevant publications in which the most frequently used ML methods across problem domains included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. As such, there exists opportunities to apply more current ML methods — including deep learning and agent-based learning — in the wildfire sciences, especially in instances involving very large multivariate datasets. We must recognize, however, that despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods such as deep learning requires a dedicated and sophisticated knowledge of their application. Finally, we stress that the wildfire research and management communities play an active role in providing relevant, high-quality, and freely available wildfire data for use by practitioners of ML methods.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3