Enhancing Solar Radiation Forecasting in Diverse Moroccan Climate Zones: A Comparative Study of Machine Learning Models with Sugeno Integral Aggregation

Author:

Mendyl Abderrahmane1ORCID,Demir Vahdettin2ORCID,Omar Najiya3,Orhan Osman4ORCID,Weidinger Tamás1ORCID

Affiliation:

1. Department of Meteorology, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary

2. Department of Civil Engineering, KTO Karatay University, 42020 Konya, Turkey

3. Electrical & Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada

4. Department of Geomatics, Engineering Faculty, Mersin University, 33343 Mersin, Turkey

Abstract

Hourly solar radiation (SR) forecasting is a vital stage in the efficient deployment of solar energy management systems. Single and hybrid machine learning (ML) models have been predominantly applied for precise hourly SR predictions based on the pattern recognition of historical heterogeneous weather data. However, the integration of ML models has not been fully investigated in terms of overcoming irregularities in weather data that may degrade the forecasting accuracy. This study investigated a strategy that highlights interactions that may exist between aggregated prediction values. In the first investigation stage, a comparative analysis was conducted utilizing three different ML models including support vector machine (SVM) regression, long short-term memory (LSTM), and multilayer artificial neural networks (MLANN) to provide insights into their relative strengths and weaknesses for SR forecasting. The comparison showed the proposed LSTM model had the greatest contribution to the overall prediction of six different SR profiles from numerous sites in Morocco. To validate the stability of the proposed LSTM, Taylor diagrams, violin plots, and Kruskal–Wallis (KW) tests were also utilized to determine the robustness of the model’s performance. Secondly, the analysis found coupling the models outputs with aggregation techniques can significantly improve the forecasting accuracy. Accordingly, a novel aggerated model that integrates the forecasting outputs of LSTM, SVM, MLANN with Sugeno λ-measure and Sugeno integral named (SLSM) was proposed. The proposed SLSM provides spatially and temporary interactions of information that are characterized by uncertainty, emphasizing the importance of the aggregation function in mitigating irregularities associated with SR data and achieving an hourly time scale forecasting accuracy with improvement of 11.7 W/m2.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3