Multi-site solar irradiance prediction based on hybrid spatiotemporal graph neural network

Author:

Yu Yunjun1ORCID,Cheng Zejie1,Xiong Biao1ORCID,Li Qian2

Affiliation:

1. School of Information Engineering, Nanchang University 1 , Nanchang 330031, China

2. School of Advanced Manufacturing, Nanchang University 2 , Nanchang 330031, China

Abstract

Constructing accurate spatiotemporal correlations is a challenging task in joint prediction of multiple photovoltaic sites. Some advanced algorithms for incorporating other surrounding site information have been proposed, such as graph neural network-based methods, which are usually based on static or dynamic graphs to build spatial dependencies between sites. However, the possibility of the simultaneous existence of multiple spatial dependencies is not considered. This paper establishes a spatiotemporal prediction model based on hybrid spatiotemporal graph neural network. In this model, we apply adaptive hybrid graph learning to learn composite spatial correlations among multiple sites. A temporal convolution module with multi-subsequence temporal data input is used to extract local semantic information to better predict future nonlinear temporal dependencies. A spatiotemporal adaptive fusion module is added to address the issue of integrating diverse spatiotemporal trends among multiple sites. To assess the model's predictive performance, nine solar radiation observation stations were selected in two different climatic environments. The average root mean square error (RMSE) of the constructed model was 38.51 and 49.90 W/m2, with average mean absolute error (MAE) of 14.72 and 23.06 W/m2, respectively. Single-site and multi-site prediction models were selected as baseline models. Compared with the baseline models, the RMSE and MAE reduce by 3.1%–20.8% and 8.9%–32.8%, respectively, across all sites. The proposed model demonstrates the effectiveness of improving accuracy in forecasting solar irradiance through multi-site predictions.

Funder

The National Key Research and Development Program for the study on technology for precise matching of supply and demand in socialized services for rural characteristic industries

The Science and Technology Department of Jiangxi Province-Fault Prediction Based on Quantum Deep Learning for Photovoltaic Inverter

The Key Research and Jiangxi Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3