Meta-Learning Guided Weight Optimization for Enhanced Solar Radiation Forecasting and Sustainable Energy Management with VotingRegressor

Author:

Boutahir Mohamed Khalifa1ORCID,Hessane Abdelaaziz1ORCID,Farhaoui Yousef1ORCID,Azrour Mourade1ORCID,Benyeogor Mbadiwe S.2ORCID,Innab Nisreen3ORCID

Affiliation:

1. STI Laboratory, T-IDMS Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University of Meknès, Errachidia 52000, Morocco

2. Institute of Physics, University of Munster, 48149 Munster, Germany

3. Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh 13713, Saudi Arabia

Abstract

Solar radiation prediction plays a crucial role in renewable energy management, impacting various decision-making processes aimed at optimizing the utilization of solar resources and promoting sustainability. Ensemble regression methods, notably VotingRegressor, have emerged as promising tools for accurate solar radiation forecasting. By integrating predictions from multiple base estimators, ensemble methods have the potential to capture intricate patterns inherent in solar radiation data. However, achieving optimal predictive performance with ensemble methods heavily relies on the careful weighting assigned to each base estimator, presenting a significant challenge. In this study, a novel approach is presented to enhance solar radiation prediction by utilizing meta-learning techniques to optimize the weighting mechanism in the VotingRegressor ensemble. Meta-learning, a subfield of machine learning focusing on learning algorithms across different tasks, provides a systematic framework for learning to learn. This enables models to adapt and generalize more effectively to new datasets and tasks. Our proposed methodology demonstrated significant improvements, with the VotingRegressor with meta-learning techniques achieving an RMSE of 8.7343, an MAE of 5.42145, and an R² of 0.991913. These results mitigate the need for manual weight tuning and improve the adaptability of the VotingRegressor to varying solar radiation conditions, ultimately contributing to the sustainability of renewable energy systems. The methodology involves a comprehensive exploration of meta-learning techniques, encompassing gradient-based optimization, reinforcement learning, and Bayesian optimization.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3