A Novel Framework for Stratified-Coupled BLS Tree Trunk Detection and DBH Estimation in Forests (BSTDF) Using Deep Learning and Optimization Adaptive Algorithm

Author:

Zhang Huacong123,Zhang Huaiqing13ORCID,Xu Keqin2,Li Yueqiao2,Wang Linlong13,Liu Ren2,Qiu Hanqing13ORCID,Yu Longhua2

Affiliation:

1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi 336600, China

3. Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Beijing 100091, China

Abstract

Diameter at breast height (DBH) is a critical metric for quantifying forest resources, and obtaining accurate, efficient measurements of DBH is crucial for effective forest management and inventory. A backpack LiDAR system (BLS) can provide high-resolution representations of forest trunk structures, making it a promising tool for DBH measurement. However, in practical applications, deep learning-based tree trunk detection and DBH estimation using BLS still faces numerous challenges, such as complex forest BLS data, low proportions of target point clouds leading to imbalanced class segmentation accuracy in deep learning models, and low fitting accuracy and robustness of trunk point cloud DBH methods. To address these issues, this study proposed a novel framework for BLS stratified-coupled tree trunk detection and DBH estimation in forests (BSTDF). This framework employed a stratified coupling approach to create a tree trunk detection deep learning dataset, introduced a weighted cross-entropy focal-loss function module (WCF) and a cosine annealing cyclic learning strategy (CACL) to enhance the WCF-CACL-RandLA-Net model for extracting trunk point clouds, and applied a (least squares adaptive random sample consensus) LSA-RANSAC cylindrical fitting method for DBH estimation. The findings reveal that the dataset based on the stratified-coupled approach effectively reduces the amount of data for deep learning tree trunk detection. To compare the accuracy of BSTDF, synchronous control experiments were conducted using the RandLA-Net model and the RANSAC algorithm. To benchmark the accuracy of BSTDF, we conducted synchronized control experiments utilizing a variety of mainstream tree trunk detection models and DBH fitting methodologies. Especially when juxtaposed with the RandLA-Net model, the WCF-CACL-RandLA-Net model employed by BSTDF demonstrated a 6% increase in trunk segmentation accuracy and a 3% improvement in the F1 score with the same training sample volume. This effectively mitigated class imbalance issues encountered during the segmentation process. Simultaneously, when compared to RANSAC, the LSA-RANCAC method adopted by BSTDF reduced the RMSE by 1.08 cm and boosted R2 by 14%, effectively tackling the inadequacies of RANSAC’s filling. The optimal acquisition distance for BLS data is 20 m, at which BSTDF’s overall tree trunk detection rate (ER) reaches 90.03%, with DBH estimation precision indicating an RMSE of 4.41 cm and R2 of 0.87. This study demonstrated the effectiveness of BSTDF in forest DBH estimation, offering a more efficient solution for forest resource monitoring and quantification, and possessing immense potential to replace field forest measurements.

Funder

Fundamental Research Funds of Chinese Academy of Forestry

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3