Annular Neighboring Points Distribution Analysis: A Novel PLS Stem Point Cloud Preprocessing Algorithm for DBH Estimation

Author:

Duanmu JialongORCID,Xing Yanqiu

Abstract

Personal laser scanning (PLS) has significant potential for estimating the in-situ diameter of breast height (DBH) with high efficiency and precision, which improves the understanding of forest structure and aids in building carbon cycle models in the big data era. PLS collects more complete stem point cloud data compared with the present laser scanning technology. However, there is still no significant advantage of DBH estimation accuracy. Because the error caused by merging different point cloud fragments has not yet been eliminated, overlapping and inaccurate co-registered point cloud fragments are often inevitable, which are usually the leading error sources of PLS-based DBH estimation. In this study, a novel pre-processing algorithm named annular neighboring points distribution analysis (ANPDA) was developed to improve PLS-based DBH estimation accuracy. To reduce the impact of inaccurately co-registered point cloud fragments, ANPDA identified outliers through iterative removal of outermost points and analyzing the distribution of annular neighboring points. Six plots containing 247 trees under different forest conditions were selected to evaluate the ANPDA. Results showed that in the six plots, error reductions of 53.80–87.13% for bias, 38.82–57.30% for mean absolute error (MAE), and 27.17–56.02% for root mean squared error (RMSE) were achieved after applying ANPDA. These results confirmed that ANPDA was generally effective for improving PLS-based DBH estimation accuracy. It appeared that ANPDA could be conveniently fused with an automatic PLS-based DBH estimation process as a preprocessing algorithm. Furthermore, it has the potential to predict and warn operators of potential large errors during hierarchical semi-automatic DBH estimation.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3