Load Frequency Control in Two-Area Multi-Source Power System Using Bald Eagle-Sparrow Search Optimization Tuned PID Controller

Author:

Raj T. Dharma1,Kumar C.2ORCID,Kotsampopoulos Panos3ORCID,Fayek Hady H.4ORCID

Affiliation:

1. The Department of Electrical and Electronics Engineering, V V College of Engineering, Tirunelveli 627657, India

2. The Department of Electrical and Electronics Engineering, M.Kumarasamy College of Engineering, Karur 639113, India

3. School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece

4. Electromechanics Engineering Department, Faculty of Engineering, Heliopolis University, Cairo 11785, Egypt

Abstract

For power system engineers, automated load frequency control (LFC) for multi-area power networks has proven a difficult problem. With the addition of numerous power generation sources, the complexity of these duties becomes even more difficult. The dynamic nature of linked power networks with varied generating sources, such as gas, thermal, and hydropower plants, is compared in this research. For the study to be more accurate, frequency and tie-line power measurements are used. For precise tuning of proportional-integral-derivative (PID) controller gains, the Bald Eagle Sparrow search optimization (BESSO) technique was used. The BESSO algorithm was created by combining the characteristics of sparrows and bald eagles. The performance of BESSO is determined by comparing its findings to those acquired using traditional approaches. In terms of Integral Time Absolute Error (ITAE), which is the most important criterion used to reduce system error, the findings presented in this study indicate the effectiveness of the BESSO-PID controller. Finally, sensitivity analysis and stability analysis proved the robustness of the developed controller. The settling times associated with the tie-line power flow, frequency variation in area-1, and frequency variation in area-2, respectively, were 10.4767 s, 8.5572 s, and 11.4364 s, which were all less than the traditional approaches. As a result, the suggested method outperformed the other strategies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3