CTFuseNet: A Multi-Scale CNN-Transformer Feature Fused Network for Crop Type Segmentation on UAV Remote Sensing Imagery

Author:

Xiang Jianjian1,Liu Jia1,Chen Du1,Xiong Qi1,Deng Chongjiu1

Affiliation:

1. School of Computer Science, China University of Geosciences, Wuhan 430074, China

Abstract

Timely and accurate acquisition of crop type information is significant for irrigation scheduling, yield estimation, harvesting arrangement, etc. The unmanned aerial vehicle (UAV) has emerged as an effective way to obtain high resolution remote sensing images for crop type mapping. Convolutional neural network (CNN)-based methods have been widely used to predict crop types according to UAV remote sensing imagery, which has excellent local feature extraction capabilities. However, its receptive field limits the capture of global contextual information. To solve this issue, this study introduced the self-attention-based transformer that obtained long-term feature dependencies of remote sensing imagery as supplementary to local details for accurate crop-type segmentation in UAV remote sensing imagery and proposed an end-to-end CNN–transformer feature-fused network (CTFuseNet). The proposed CTFuseNet first provided a parallel structure of CNN and transformer branches in the encoder to extract both local and global semantic features from the imagery. A new feature-fusion module was designed to flexibly aggregate the multi-scale global and local features from the two branches. Finally, the FPNHead of feature pyramid network served as the decoder for the improved adaptation to the multi-scale fused features and output the crop-type segmentation results. Our comprehensive experiments indicated that the proposed CTFuseNet achieved a higher crop-type-segmentation accuracy, with a mean intersection over union of 85.33% and a pixel accuracy of 92.46% on the benchmark remote sensing dataset and outperformed the state-of-the-art networks, including U-Net, PSPNet, DeepLabV3+, DANet, OCRNet, SETR, and SegFormer. Therefore, the proposed CTFuseNet was beneficial for crop-type segmentation, revealing the advantage of fusing the features found by the CNN and the transformer. Further work is needed to promote accuracy and efficiency of this approach, as well as to assess the model transferability.

Funder

National Natural Science Foundation of China

Open Research Project of The Hubei Key Laboratory of 465 Intelligent Geo-Information Processing

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3