TCNet: Transformer Convolution Network for Cutting-Edge Detection of Unharvested Rice Regions

Author:

Yang Yukun12,He Jie2ORCID,Wang Pei2,Luo Xiwen12,Zhao Runmao2ORCID,Huang Peikui2,Gao Ruitao2,Liu Zhaodi2,Luo Yaling2,Hu Lian2ORCID

Affiliation:

1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

Cutting-edge detection is a critical step in mechanized rice harvesting. Through visual cutting-edge detection, an algorithm can sense in real-time whether the rice harvesting process is along the cutting-edge, reducing loss and improving the efficiency of mechanized harvest. Although convolutional neural network-based models, which have strong local feature acquisition ability, have been widely used in rice production, these models involve large receptive fields only in the deep network. Besides, a self-attention-based Transformer can effectively provide global features to complement the disadvantages of CNNs. Hence, to quickly and accurately complete the task of cutting-edge detection in a complex rice harvesting environment, this article develops a Transformer Convolution Network (TCNet). This cutting-edge detection algorithm combines the Transformer with a CNN. Specifically, the Transformer realizes a patch embedding through a 3 × 3 convolution, and the output is employed as the input of the Transformer module. Additionally, the multi-head attention in the Transformer module undergoes dimensionality reduction to reduce overall network computation. In the Feed-forward network, a 7 × 7 convolution operation is used to realize the position-coding of different patches. Moreover, CNN uses depth-separable convolutions to extract local features from the images. The global features extracted by the Transformer and the local features extracted by the CNN are integrated into the fusion module. The test results demonstrated that TCNet could segment 97.88% of the Intersection over Union and 98.95% of the Accuracy in the unharvested region, and the number of parameters is only 10.796M. Cutting-edge detection is better than common lightweight backbone networks, achieving the detection effect of deep convolutional networks (ResNet-50) with fewer parameters. The proposed TCNet shows the advantages of a Transformer combined with a CNN and provides real-time and reliable reference information for the subsequent operation of rice harvesting.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3