AK-DL: A Shallow Neural Network Model for Diagnosing Actinic Keratosis with Better Performance than Deep Neural Networks

Author:

Wang Liyang,Chen Angxuan,Zhang Yan,Wang Xiaoya,Zhang Yu,Shen QunORCID,Xue YongORCID

Abstract

Actinic keratosis (AK) is one of the most common precancerous skin lesions, which is easily confused with benign keratosis (BK). At present, the diagnosis of AK mainly depends on histopathological examination, and ignorance can easily occur in the early stage, thus missing the opportunity for treatment. In this study, we designed a shallow convolutional neural network (CNN) named actinic keratosis deep learning (AK-DL) and further developed an intelligent diagnostic system for AK based on the iOS platform. After data preprocessing, the AK-DL model was trained and tested with AK and BK images from dataset HAM10000. We further compared it with mainstream deep CNN models, such as AlexNet, GoogLeNet, and ResNet, as well as traditional medical image processing algorithms. Our results showed that the performance of AK-DL was better than the mainstream deep CNN models and traditional medical image processing algorithms based on the AK dataset. The recognition accuracy of AK-DL was 0.925, the area under the receiver operating characteristic curve (AUC) was 0.887, and the training time was only 123.0 s. An iOS app of intelligent diagnostic system was developed based on the AK-DL model for accurate and automatic diagnosis of AK. Our results indicate that it is better to employ a shallow CNN in the recognition of AK.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3