SAMI: an M-Health application to telemonitor intelligibility and speech disorder severity in head and neck cancers

Author:

Quintas Sebastião,Vaysse Robin,Balaguer Mathieu,Roger Vincent,Mauclair Julie,Farinas Jérôme,Woisard Virginie,Pinquier Julien

Abstract

Perceptual measures, such as intelligibility and speech disorder severity, are widely used in the clinical assessment of speech disorders in patients treated for oral or oropharyngeal cancer. Despite their widespread usage, these measures are known to be subjective and hard to reproduce. Therefore, an M-Health assessment based on an automatic prediction has been seen as a more robust and reliable alternative. Despite recent progress, these automatic approaches still remain somewhat theoretical, and a need to implement them in real clinical practice rises. Hence, in the present work we introduce SAMI, a clinical mobile application used to predict speech intelligibility and disorder severity as well as to monitor patient progress on these measures over time. The first part of this work illustrates the design and development of the systems supported by SAMI. Here, we show how deep neural speaker embeddings are used to automatically regress speech disorder measurements (intelligibility and severity), as well as the training and validation of the system on a French corpus of head and neck cancer. Furthermore, we also test our model on a secondary corpus recorded in real clinical conditions. The second part details the results obtained from the deployment of our system in a real clinical environment, over the course of several weeks. In this section, the results obtained with SAMI are compared to an a posteriori perceptual evaluation, conducted by a set of experts on the new recorded data. The comparison suggests a high correlation and a low error between the perceptual and automatic evaluations, validating the clinical usage of the proposed application.

Publisher

Frontiers Media SA

Reference49 articles.

1. Non-intrusive speech intelligibility prediction using convolutional neural networks;Andersen;IEEE/ACM Trans. Audio Speech Lang. Process,2018

2. Assessment of impairment of intelligibility and of speech signal after oral cavity and oropharynx cancer;Balaguer;Eur. Ann. Otorhinolaryngol. Head Neck Dis,2019

3. “Automatic speech intelligibility scoring of head and neck cancer patients with deep neural networks,”;Bin,2019

4. Intelligibility as a linear combination of dimensions in dysarthric speech;Bodt;J. Commun. Disord,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3