Detecting Tumor Infiltration in Diffuse Gliomas with Deep Learning

Author:

Prathaban Karthik1,Wu Bingcheng2,Tan Char Loo2,Huang Zhiwei1ORCID

Affiliation:

1. Department of Biomedical Engineering Optical Bioimaging Laboratory College of Design and Engineering National University of Singapore Singapore 117576 Singapore

2. Department of Pathology National University Health System Singapore 119074 Singapore

Abstract

Glioblastoma tumor recurrences often occur in brain tissue areas harboring infiltrating tumor cells, resembling healthy tissue in brain imaging. Demarcating infiltrative regions for aggressive resections is critical for improving prognostic outcomes but is challenging in neurosurgery. Herein, a multilayer sigmoid‐activated convolutional neural network (MLS‐CNN) is developed for rapidly distinguishing glioma tumor infiltration in brain tissue histology. Unlike conventional multiclass classifiers, the MLS‐CNN employs sigmoidal activation to accommodate coexisting classes within patch images. 59 811 image patches (25 807 infiltrating edge, 15 178 normal brain, 18 826 cellular tumor) from 73 brain tissue samples are extracted to train the classifier. The model achieves an accuracy of 91.70% (sensitivity: 91.62%; specificity: 91.78%) and area under the curve (AUC) of 0.964 in distinguishing infiltrating edges, outperforming the current state‐of‐the‐art Vision Transformer (ViT) (accuracy: 89.45; AUC: 0.947). The MLS‐CNN is computationally efficient, generating predictions within 11.5 s in comparison to 81.4 s for ViT. The predictions strongly correlate with In Situ Hybridization expression intensities, validating the utility of the MLS‐CNN model in spatial genomics investigations in gliomas. The robust model can therefore serve as an automatic and accurate classifier to help pathologists identify infiltrative glioma for better diagnosis and patient outcomes in brain oncology.

Funder

Ministry of Education - Singapore

National Medical Research Council

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3