Author:
Zhong Pengqiang,Hong Mengzhi,He Huanyu,Zhang Jiang,Chen Yaoming,Wang Zhigang,Chen Peisong,Ouyang Juan
Abstract
We developed an artificial intelligence (AI) model that evaluates the feasibility of AI-assisted multiparameter flow cytometry (MFC) diagnosis of acute leukemia. Two hundred acute leukemia patients and 94 patients with cytopenia(s) or hematocytosis were selected to study the AI application in MFC diagnosis of acute leukemia. The kappa test analyzed the consistency of the diagnostic results and the immunophenotype of acute leukemia. Bland–Altman and Pearson analyses evaluated the consistency and correlation of the abnormal cell proportion between the AI and manual methods. The AI analysis time for each case (83.72 ± 23.90 s, mean ± SD) was significantly shorter than the average time for manual analysis (15.64 ± 7.16 min, mean ± SD). The total consistency of diagnostic results was 0.976 (kappa (κ) = 0.963). The Bland–Altman evaluation of the abnormal cell proportion between the AI analysis and manual analysis showed that the bias ± SD was 0.752 ± 6.646, and the 95% limit of agreement was from −12.775 to 13.779 (p = 0.1225). The total consistency of the AI immunophenotypic diagnosis and the manual results was 0.889 (kappa, 0.775). The consistency and speedup of the AI-assisted workflow indicate its promising clinical application.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献