Author:
Cheng Fu-Ming,Lo Shih-Chang,Lin Ching-Chan,Lo Wen-Jyi,Chien Shang-Yu,Sun Ting-Hsuan,Hsu Kai-Cheng
Abstract
AbstractThis study aimed to evaluate the sensitivity of AI in screening acute leukemia and its capability to classify either physiological or pathological cells. Utilizing an acute leukemia orientation tube (ALOT), one of the protocols of Euroflow, flow cytometry efficiently identifies various forms of acute leukemia. However, the analysis of flow cytometry can be time-consuming work. This retrospective study included 241 patients who underwent flow cytometry examination using ALOT between 2017 and 2022. The collected flow cytometry data were used to train an artificial intelligence using deep learning. The trained AI demonstrated a 94.6% sensitivity in detecting acute myeloid leukemia (AML) patients and a 98.2% sensitivity for B-lymphoblastic leukemia (B-ALL) patients. The sensitivities of physiological cells were at least 80%, with variable performance for pathological cells. In conclusion, the AI, trained with ResNet-50 and EverFlow, shows promising results in identifying patients with AML and B-ALL, as well as classifying physiological cells.
Funder
China Medical University and China Medical University Hospital
Publisher
Springer Science and Business Media LLC