A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss

Author:

Nie YaliORCID,Sommella PaoloORCID,Carratù MarcoORCID,O’Nils MattiasORCID,Lundgren JanORCID

Abstract

Skin cancers are the most cancers diagnosed worldwide, with an estimated > 1.5 million new cases in 2020. Use of computer-aided diagnosis (CAD) systems for early detection and classification of skin lesions helps reduce skin cancer mortality rates. Inspired by the success of the transformer network in natural language processing (NLP) and the deep convolutional neural network (DCNN) in computer vision, we propose an end-to-end CNN transformer hybrid model with a focal loss (FL) function to classify skin lesion images. First, the CNN extracts low-level, local feature maps from the dermoscopic images. In the second stage, the vision transformer (ViT) globally models these features, then extracts abstract and high-level semantic information, and finally sends this to the multi-layer perceptron (MLP) head for classification. Based on an evaluation of three different loss functions, the FL-based algorithm is aimed to improve the extreme class imbalance that exists in the International Skin Imaging Collaboration (ISIC) 2018 dataset. The experimental analysis demonstrates that impressive results of skin lesion classification are achieved by employing the hybrid model and FL strategy, which shows significantly high performance and outperforms the existing work.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference59 articles.

1. Global burden of cutaneous melanoma in 2020 and projections to 2040;Arnold;JAMA Dermatol.,2022

2. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images;Iqbal;Comput. Med. Imaging Graph.,2021

3. Scale-Aware Transformers for Diagnosing Melanocytic Lesions;Wu;IEEE Access,2021

4. Estimating the cost of skin cancer detection by dermatology providers in a large health care system;Matsumoto;J. Am. Acad. Dermatol.,2018

5. (2022, May 03). How to Become a Dermatologist. Available online: https://www.howtobecome.com/how-to-become-a-dermatologist.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3