HDCCT: Hybrid Densely Connected CNN and Transformer for Infrared and Visible Image Fusion

Author:

Li Xue1ORCID,He Hui2,Shi Jin3

Affiliation:

1. School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China

2. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

3. CRSC Research and Design Institute Group Co., Ltd., Beijing 100070, China

Abstract

Multi-modal image fusion is a methodology that combines image features from multiple types of sensors, effectively improving the quality and content of fused images. However, most existing deep learning fusion methods need to integrate global or local features, restricting the representation of feature information. To address this issue, a hybrid densely connected CNN and transformer (HDCCT) fusion framework is proposed. In the proposed HDCCT framework, the network of the CNN-based blocks obtain the local structure of the input data, and the transformer-based blocks obtain the global structure of the original data, significantly improving the feature representation. In the fused image, the proposed encoder–decoder architecture is designed for both the CNN and transformer blocks to reduce feature loss while preserving the characterization of all-level features. In addition, the cross-coupled framework facilitates the flow of feature structures, retains the uniqueness of information, and makes the transform model long-range dependencies based on the local features already extracted by the CNN. Meanwhile, to retain the information in the source images, the hybrid structural similarity (SSIM) and mean square error (MSE) loss functions are introduced. The qualitative and quantitative comparisons of grayscale images with infrared and visible image fusion indicate that the suggested method outperforms related works.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3