Blockchain-Based Deep CNN for Brain Tumor Prediction Using MRI Scans

Author:

Mohammad Farah1ORCID,Al Ahmadi Saad2ORCID,Al Muhtadi Jalal12

Affiliation:

1. Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh 11543, Saudi Arabia

2. College of Computer & Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Abstract

Brain tumors are nonlinear and present with variations in their size, form, and textural variation; this might make it difficult to diagnose them and perform surgical excision using magnetic resonance imaging (MRI) scans. The procedures that are currently available are conducted by radiologists, brain surgeons, and clinical specialists. Studying brain MRIs is laborious, error-prone, and time-consuming, but they nonetheless show high positional accuracy in the case of brain cells. The proposed convolutional neural network model, an existing blockchain-based method, is used to secure the network for the precise prediction of brain tumors, such as pituitary tumors, meningioma tumors, and glioma tumors. MRI scans of the brain are first put into pre-trained deep models after being normalized in a fixed dimension. These structures are altered at each layer, increasing their security and safety. To guard against potential layer deletions, modification attacks, and tempering, each layer has an additional block that stores specific information. Multiple blocks are used to store information, including blocks related to each layer, cloud ledger blocks kept in cloud storage, and ledger blocks connected to the network. Later, the features are retrieved, merged, and optimized utilizing a Genetic Algorithm and have attained a competitive performance compared with the state-of-the-art (SOTA) methods using different ML classifiers.

Funder

Center of Excellence in Information Assurance (CoEIA), KSU

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3