Classification of brain tumor types through MRIs using parallel CNNs and firefly optimization

Author:

Li Chen,Zhang Faxue,Du Yongjian,Li Huachao

Abstract

AbstractImage segmentation is a critical and challenging endeavor in the field of medicine. A magnetic resonance imaging (MRI) scan is a helpful method for locating any abnormal brain tissue these days. It is a difficult undertaking for radiologists to diagnose and classify the tumor from several pictures. This work develops an intelligent method for accurately identifying brain tumors. This research investigates the identification of brain tumor types from MRI data using convolutional neural networks and optimization strategies. Two novel approaches are presented: the first is a novel segmentation technique based on firefly optimization (FFO) that assesses segmentation quality based on many parameters, and the other is a combination of two types of convolutional neural networks to categorize tumor traits and identify the kind of tumor. These upgrades are intended to raise the general efficacy of the MRI scan technique and increase identification accuracy. Using MRI scans from BBRATS2018, the testing is carried out, and the suggested approach has shown improved performance with an average accuracy of 98.6%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3