Efficient Skip Connections-Based Residual Network (ESRNet) for Brain Tumor Classification

Author:

B. Ashwini1,Kaur Manjit2ORCID,Singh Dilbag34ORCID,Roy Satyabrata5,Amoon Mohammed6ORCID

Affiliation:

1. Department of ISE, NMAM Institute of Technology, Nitte (Deemed to be University), Nitte 574110, India

2. School of Computer Science and Artificial Intelligence, SR University, Warangal 506371, India

3. Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA

4. Research and Development Cell, Lovely Professional University, Phagwara 144411, India

5. Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur 303007, India

6. Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

Abstract

Brain tumors pose a complex and urgent challenge in medical diagnostics, requiring precise and timely classification due to their diverse characteristics and potentially life-threatening consequences. While existing deep learning (DL)-based brain tumor classification (BTC) models have shown significant progress, they encounter limitations like restricted depth, vanishing gradient issues, and difficulties in capturing intricate features. To address these challenges, this paper proposes an efficient skip connections-based residual network (ESRNet). leveraging the residual network (ResNet) with skip connections. ESRNet ensures smooth gradient flow during training, mitigating the vanishing gradient problem. Additionally, the ESRNet architecture includes multiple stages with increasing numbers of residual blocks for improved feature learning and pattern recognition. ESRNet utilizes residual blocks from the ResNet architecture, featuring skip connections that enable identity mapping. Through direct addition of the input tensor to the convolutional layer output within each block, skip connections preserve the gradient flow. This mechanism prevents vanishing gradients, ensuring effective information propagation across network layers during training. Furthermore, ESRNet integrates efficient downsampling techniques and stabilizing batch normalization layers, which collectively contribute to its robust and reliable performance. Extensive experimental results reveal that ESRNet significantly outperforms other approaches in terms of accuracy, sensitivity, specificity, F-score, and Kappa statistics, with median values of 99.62%, 99.68%, 99.89%, 99.47%, and 99.42%, respectively. Moreover, the achieved minimum performance metrics, including accuracy (99.34%), sensitivity (99.47%), specificity (99.79%), F-score (99.04%), and Kappa statistics (99.21%), underscore the exceptional effectiveness of ESRNet for BTC. Therefore, the proposed ESRNet showcases exceptional performance and efficiency in BTC, holding the potential to revolutionize clinical diagnosis and treatment planning.

Funder

King Saud University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3