Automated Categorization of Brain Tumor from MRI Using CNN features and SVM
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02568-w.pdf
Reference45 articles.
1. Abbasi S, Tajeripour F (2017) Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219:526–535
2. Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko, TR (2019). Brain tumor classification using convolutional neural network. In: World Congress on Medical Physics and Biomedical Engineering 2018, Springer, Singapore, pp 183-189
3. Afshar P, Mohammadi A, Plataniotis KN (2018) Brain tumor type classification via capsule networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, pp 3129-3133
4. Afshar P, Plataniotis KN, Mohammadi A (2019) Capsule networks for brain tumor classification based on mri images and coarse tumor boundaries. In: ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 1368–1372
5. Agarap AF (2017) An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. arXiv preprint arXiv:1712.03541
Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bidirectional brain image translation using transfer learning from generic pre-trained models;Computer Vision and Image Understanding;2024-11
2. A Unified Pipeline for Simultaneous Brain Tumor Classification and Segmentation Using Fine-Tuned CNN and Residual UNet Architecture;Life;2024-09-10
3. An automated metaheuristic-optimized approach for diagnosing and classifying brain tumors based on a convolutional neural network;Results in Engineering;2024-09
4. Improving brain tumor classification with combined convolutional neural networks and transfer learning;Knowledge-Based Systems;2024-09
5. Brain tumor classification for combining the advantages of multilayer dense net‐based feature extraction and hyper‐parameters tuned attentive dual residual generative adversarial network classifier using wild horse optimization;NMR in Biomedicine;2024-08-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3