Brain tumor classification for combining the advantages of multilayer dense net‐based feature extraction and hyper‐parameters tuned attentive dual residual generative adversarial network classifier using wild horse optimization

Author:

Anantharajan Shenbagarajan1ORCID,Gunasekaran Shenbagalakshmi2,Sujana J. Angela Jennifa3

Affiliation:

1. Associate Professor, Department of Artificial Intelligence and Data Science Mepco Schlenk Engineering College Sivakasi Tamil Nadu India

2. Assistant Professor, Department of Computer Science and Engineering Mepco Schlenk Engineering College Sivakasi Tamil Nadu India

3. Professor, Department of Artificial Intelligence and Data Science Mepco Schlenk Engineering College Sivakasi Tamil Nadu India

Abstract

AbstractIn this manuscript, attentive dual residual generative adversarial network optimized using wild horse optimization algorithm for brain tumor detection (ADRGAN‐WHOA‐BTD) is proposed. Here, the input imageries are gathered using BraTS, RemBRANDT, and Figshare datasets. Initially, the images are preprocessed to increase the quality of images and eliminate the unwanted noises. The preprocessing is performed with dual‐tree complex wavelet transform (DTCWT). The image features like geodesic data and texture features like contrasts, energy, correlations, homogeneity, and entropy are extracted using multilayer dense net methods. Then, the extracted images are given to attentive dual residual generative adversarial network (ADRGAN) classifier for classifying the brain imageries. The ADRGAN weight parameters are tuned based on wild horse optimization algorithm (WHOA). The proposed method is executed in MATLAB. For the BraTS dataset, the ADRGAN‐WHOA‐BTD method achieved accuracy, sensitivity, specificity, F‐measure, precision, and error rates of 99.85%, 99.82%, 98.92%, 99.76%, 99.45%, and 0.15%, respectively. Then, the proposed technique demonstrated a runtime of 13 s, significantly outperforming existing methods.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3