Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review

Author:

Allahqoli LeilaORCID,Laganà Antonio SimoneORCID,Mazidimoradi Afrooz,Salehiniya Hamid,Günther Veronika,Chiantera Vito,Karimi Goghari Shirin,Ghiasvand Mohammad Matin,Rahmani Azam,Momenimovahed Zohre,Alkatout Ibrahim

Abstract

Objective: The likelihood of timely treatment for cervical cancer increases with timely detection of abnormal cervical cells. Automated methods of detecting abnormal cervical cells were established because manual identification requires skilled pathologists and is time consuming and prone to error. The purpose of this systematic review is to evaluate the diagnostic performance of artificial intelligence (AI) technologies for the prediction, screening, and diagnosis of cervical cancer and pre-cancerous lesions. Materials and Methods: Comprehensive searches were performed on three databases: Medline, Web of Science Core Collection (Indexes = SCI-EXPANDED, SSCI, A & HCI Timespan) and Scopus to find papers published until July 2022. Articles that applied any AI technique for the prediction, screening, and diagnosis of cervical cancer were included in the review. No time restriction was applied. Articles were searched, screened, incorporated, and analyzed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Results: The primary search yielded 2538 articles. After screening and evaluation of eligibility, 117 studies were incorporated in the review. AI techniques were found to play a significant role in screening systems for pre-cancerous and cancerous cervical lesions. The accuracy of the algorithms in predicting cervical cancer varied from 70% to 100%. AI techniques make a distinction between cancerous and normal Pap smears with 80–100% accuracy. AI is expected to serve as a practical tool for doctors in making accurate clinical diagnoses. The reported sensitivity and specificity of AI in colposcopy for the detection of CIN2+ were 71.9–98.22% and 51.8–96.2%, respectively. Conclusion: The present review highlights the acceptable performance of AI systems in the prediction, screening, or detection of cervical cancer and pre-cancerous lesions, especially when faced with a paucity of specialized centers or medical resources. In combination with human evaluation, AI could serve as a helpful tool in the interpretation of cervical smears or images.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference176 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;CA Cancer J. Clin.,2021

2. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;CA Cancer J. Clin.,2018

3. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2018). Global Cancer Observatory: Cancer Today, International Agency for Research on Cancer.

4. Projections of number of cancer cases in India (2010-2020) by cancer groups;Asian Pac. J. Cancer Prev.,2010

5. Factors related to cervical cancer screening among Asian women;Eur. Rev. Med. Pharmacol. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3