Affiliation:
1. Faculty of Engineering, Applied AI and Data Science Unit Mærsk Mc‐Kinney Møller Institute, University of Southern Denmark Odense Denmark
2. Centre for Clinical Artificial Intelligence Odense University Hospital Odense Denmark
3. Department of Gynecology and Obstetrics Odense University Hospital Odense Denmark
4. Research Unit for Gynecology and Obstetrics (Odense) Odense University Hospital Odense Denmark
Abstract
AbstractEarly diagnosis of abnormal cervical cells enhances the chance of prompt treatment for cervical cancer (CrC). Artificial intelligence (AI)‐assisted decision support systems for detecting abnormal cervical cells are developed because manual identification needs trained healthcare professionals, and can be difficult, time‐consuming, and error‐prone. The purpose of this study is to present a comprehensive review of AI technologies used for detecting cervical pre‐cancerous lesions and cancer. The review study includes studies where AI was applied to Pap Smear test (cytological test), colposcopy, sociodemographic data and other risk factors, histopathological analyses, magnetic resonance imaging‐, computed tomography‐, and positron emission tomography‐scan‐based imaging modalities. We performed searches on Web of Science, Medline, Scopus, and Inspec. The preferred reporting items for systematic reviews and meta‐analysis guidelines were used to search, screen, and analyze the articles. The primary search resulted in identifying 9745 articles. We followed strict inclusion and exclusion criteria, which include search windows of the last decade, journal articles, and machine/deep learning‐based methods. A total of 58 studies have been included in the review for further analysis after identification, screening, and eligibility evaluation. Our review analysis shows that deep learning models are preferred for imaging techniques, whereas machine learning‐based models are preferred for sociodemographic data. The analysis shows that convolutional neural network‐based features yielded representative characteristics for detecting pre‐cancerous lesions and CrC. The review analysis also highlights the need for generating new and easily accessible diverse datasets to develop versatile models for CrC detection. Our review study shows the need for model explainability and uncertainty quantification to increase the trust of clinicians and stakeholders in the decision‐making of automated CrC detection models. Our review suggests that data privacy concerns and adaptability are crucial for deployment hence, federated learning and meta‐learning should also be explored.This article is categorized under:
Fundamental Concepts of Data and Knowledge > Explainable AI
Technologies > Machine Learning
Technologies > Classification