Cervical‐YOSA: Utilizing prompt engineering and pre‐trained large‐scale models for automated segmentation of multi‐sequence MRI images in cervical cancer

Author:

Xia Yanwei1ORCID,Ou Zhengjie2,Tan Lihua2,Liu Qiang1,Cui Yanfen3,Teng Da1,Zhao Dan2

Affiliation:

1. Academy of Artificial Intelligence Beijing Institute of Petrochemical Technology Beijing China

2. Department of Gynecology Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

3. Department of Radiology Shanxi Province Cancer Hospital Shanxi Medical University Taiyuan China

Abstract

AbstractCervical cancer is a major health concern, particularly in developing countries with limited medical resources. This study introduces two models aimed at improving cervical tumor segmentation: a semi‐automatic model that fine‐tunes the Segment Anything Model (SAM) and a fully automated model designed for efficiency. Evaluations were conducted using a dataset of 8586 magnetic resonance imaging (MRI) slices, where the semi‐automatic model achieved a Dice Similarity Coefficient (DSC) of 0.9097, demonstrating high accuracy. The fully automated model also performed robustly with a DSC of 0.8526, outperforming existing methods. These models offer significant potential to enhance cervical cancer diagnosis and treatment, especially in resource‐limited settings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Qinghai Province

Beijing Municipal Education Commission

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3