Nickel-Copper Oxide Catalysts Deposited on Stainless Steel Meshes by Plasma Jet Sputtering: Comparison with Granular Analogues and Synergistic Effect in VOC Oxidation

Author:

Jirátová Květa1,Soukal Petr2,Kapran Anna23ORCID,Babii Timur4,Balabánová Jana1ORCID,Koštejn Martin1,Čada Martin2ORCID,Maixner Jaroslav5,Topka Pavel1ORCID,Hubička Zdeněk2ORCID,Kovanda František4

Affiliation:

1. Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic

2. Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic

3. Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic

4. Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic

5. Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic

Abstract

A novel method for the preparation of Ni-Cu oxide catalysts—deposition on stainless steel meshes using hollow cathode plasma jet sputtering—was studied. This method allows the preparation of thin oxide films. Consequently, the whole volume of the active phase is readily accessible for the reactants and can be employed in the catalytic reaction due to the negligible effect of internal diffusion. As a result, the activity of our sputtered catalyst was seven times higher in ethanol oxidation and 61 times higher in toluene oxidation than that of the corresponding granular catalyst. Moreover, due to stainless steel meshes used as a catalyst support, the pressure drop across the catalyst bed was lower. Finally, the catalytic activity of the sputtered Ni-Cu oxide catalyst with Ni:Cu molar ratio of 1:1 in ethanol oxidation was 1.7 times higher than that of the commercial EnviCat® VOC-1544 catalyst, while the amount of the active phase in the catalyst bed was 139 times lower. The outstanding performance of the Ni0.5Cu0.5 catalyst was ascribed to the synergistic effect between the copper and nickel components.

Funder

Czech Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3