The Effect of Different g-C3N4 Precursor Nature on Its Structural Control and Photocatalytic Degradation Activity

Author:

Liu Xiuhang1,Xu Xiaoye1,Gan Huihui12,Yu Mengfei1,Huang Ying1

Affiliation:

1. School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China

2. Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China

Abstract

Due to its good visible-light photocatalytic activity and environmental friendliness, g-C3N4 has attracted much attention. The relationship between precursor type and the properties of obtained catalysts is interesting to investigate. In this work, target catalysts were prepared via the thermal polymerization of different precursors, melamine, a mixture of urea and melamine, and a mixture of melamine and cyanuric acid. The prepared g-C3N4 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), and scanning electron microscopy (SEM). Through the characterization and analysis, the adjusting of precursors could result in the change of the microstructure. The maximum BET surface area was 98.04 cm3g−1 through precursor controlling, more than eight times that of MCN (11.15 cm3g−1) using melamine as precursor. The thermal decomposition process was also analyzed to discuss the interaction and polymerization with precursor controlling. The introduction of melamine and cyanuric acid with melamine as precursors led to the formation of a special nanotube structure and additional function groups on the surface of g-C3N4 to increase the photocatalytic activity.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

General Research Project of Zhejiang Provincial Department of Education

K.C. Wong Magna Fund in Ningbo University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3