Preparation of high-crystalline and non-metal modified g-C3N4 for improving ultrasound-accelerated white-LED-light-driven photocatalytic performances

Author:

Tarighati Sareshkeh Abdolreza,Seyed Dorraji Mir Saeed,Karami Zhaleh,Shahmoradi Saeedeh,Fekri Elnaz,Daneshvar Hoda,Rasoulifard Mohammad Hossein,Karimov Denis N.

Abstract

AbstractAs a non-metallic organic semiconductor, graphitic carbon nitride (g-C3N4) has received much attention due to its unique physicochemical properties. However, the photocatalytic activity of this semiconductor faces challenges due to factors such as low electronic conductivity and limited active sites provided on its surface. The morphology and structure of g-C3N4, including macro/micro morphology, crystal structure and electronic structure can affect its catalytic activity. Non-metallic heteroatom doping is considered as an effective method to tune the optical, electronic and other physicochemical properties of g-C3N4. Here, we synthesized non-metal-doped highly crystalline g-C3N4 by one-pot calcination method, which enhanced the photocatalytic activity of g-C3N4 such as mesoporous nature, reduced band gap, wide-range photousability, improved charge carrier recombination, and the electrical conductivity was improved. Hence, the use of low-power white-LED-light illumination (λ ≥ 420 nm) and ultrasound (US) irradiation synergistically engendered the Methylene Blue (MB) mineralization efficiency elevated to 100% within 120 min by following the pseudo-first-order mechanism under the following condition (i.e., pH 11, 0.75 g L−1 of O-doped g-C3N4 and S-doped g-C3N4, 20 mg L−1 MB, 0.25 ml s−1 O2, and spontaneous raising temperature). In addition, the rapid removal of MB by sonophotocatalysis was 4 times higher than that of primary photocatalysis. And radical scavenging experiments showed that the maximum distribution of active species corresponds to superoxide radical $${\mathrm{O}}_{2}^{\cdot-}$$ O 2 · - . More importantly, the sonophotocatalytic degradation ability of O-doped g-C3N4 and S-doped g-C3N4 was remarkably sustained even after the sixth consecutive run.

Funder

Iran National Science Foundation

Russian Foundation for Basic Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3